If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=180
We move all terms to the left:
a^2-(180)=0
a = 1; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·1·(-180)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*1}=\frac{0-12\sqrt{5}}{2} =-\frac{12\sqrt{5}}{2} =-6\sqrt{5} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*1}=\frac{0+12\sqrt{5}}{2} =\frac{12\sqrt{5}}{2} =6\sqrt{5} $
| 4x/5x=7x+8/9x-20 | | -8=1/5(2.5x-8 | | 25=d50/50^2 | | w+-195=188 | | 25=50d/50^2 | | 714=-21h | | h+641=981 | | 25=2d50/50^2 | | (x-3)^3=27 | | 3y+5=4y+15 | | 286=z-8 | | 20-5w=10w+5 | | -6h=222 | | (3x+2x)-4=32 | | 15=d-19 | | 2+4x-8=12x-20 | | k-16=19 | | 26-2x=-22 | | 3(8)=2(2x+2) | | 23r=690 | | 4(x)=3(12) | | n+18=48 | | t-16=27 | | 6(x+1)-4x+5=-2x-2 | | 3a^2-1a-84=0 | | 2x=7-12x | | -4x-15=x | | 23(23-x)=529-23x | | -3(2x-8)+6=-6x+30 | | (5x+24)=(6x-5) | | (7x-24)=(5x+8) | | -x3+x+x2-1=0 |